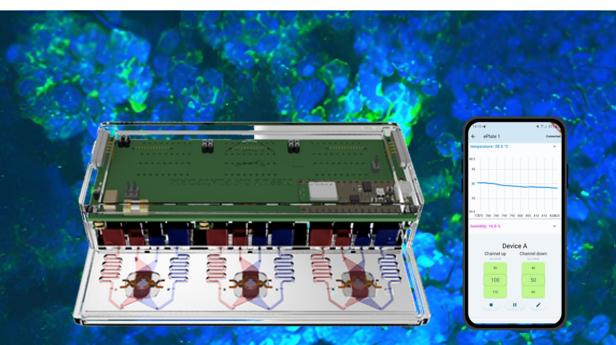
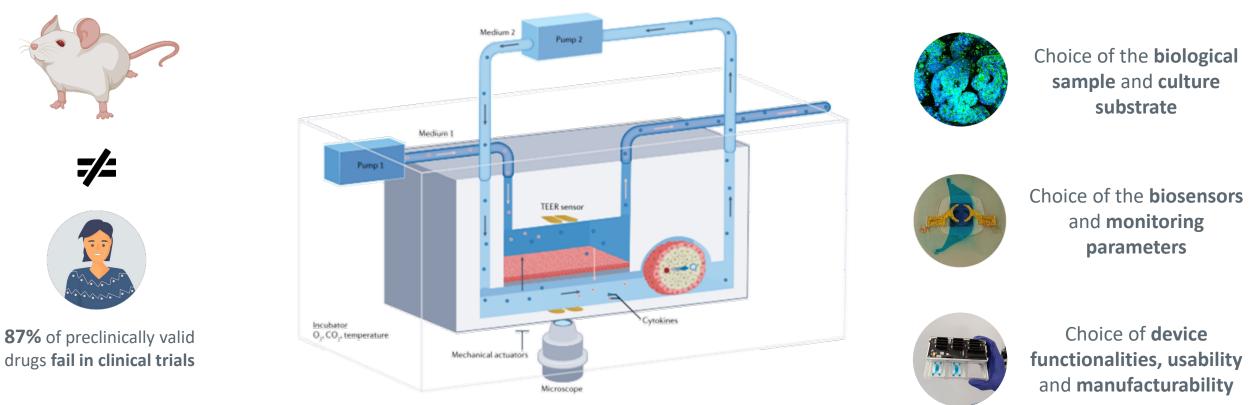

ADVANCED CULTURE SYSTEMS **Activities & Thesis Projects**

Milli-fluidic Platforms and Microphysiological Systems

Three-Dimensional Bioreactors

ATTIC Lab Advanced Technology for Tissue Culture





Milli-fluidic Platforms and Microphysiological Systems

Three-Dimensional Bioreactors

Human based, advanced in vitro/ex vivo models mimicking the human complexity

Reference:

Leung 2022, Nature Reviews Methods Primers Paul 2010, Nature Reviews Drug Discovery

iomechanics Research Group

Advanced in vitro/ex vivo systems can increase of about 40% the probability of a drug to success in clinical trials

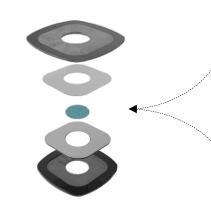
Advanced Culture Systems

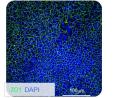
lorenzopietro.Coppadoro@polimi.it

Contacts:

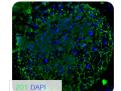
TTOP a modular, versatile and easy to use microphysiological system

Tunable biological model and culture substrate


Device unique features


- Optical accessibility
- Contact co-culture
- Standard design
- Versatility in choosing the biological sample
- Sample retrieval and reuse in different configurations

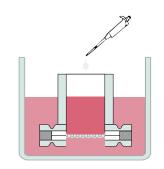
Activities


- In vitro barrier tissue state of the art analysis
- Key design parameters identification
- Device customization
- Technical and biological preliminary testing
- Device optimization and large scale manufacturing

TTOP culture insert

2D CELL CULTURES

3D CELL CULTURES

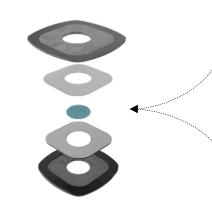

ORGANOTYPIC CULTURES POROUS MEMBRANES

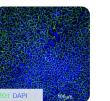
PATIENT DERIVED BIOPSY SLICE

Contacts: lorenzopietro.Coppadoro@polimi.it

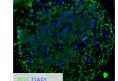
TTOP a modular, versatile and easy to use microphysiological system

Tunable biological model and culture substrate


Device unique features


- Optical accessibility
- Contact co-culture
- Standard design
- Versatility in choosing the biological sample
- Sample retrieval and reuse in different configurations

Activities


- In vitro barrier tissue state of the art analysis
- Key design parameters identification
- Device customization
- Technical and biological preliminary testing
- Device optimization and large scale manufacturing

TTOP culture insert

2D CELL CULTURES

3D CELL CULTURES

ORGANOTYPIC CULTURES POROUS MEMBRANES

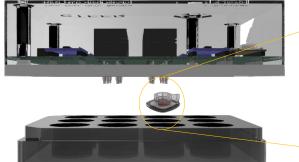
PATIENT DERIVED BIOPSY SLICE

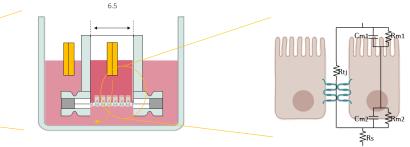
People involved:

Contacts: lorenzopietro.Coppadoro@polimi.it

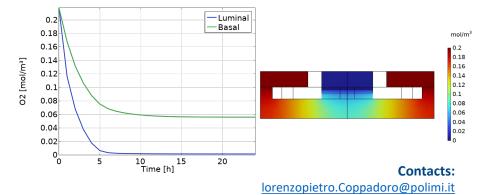
Biomechanics Research Group

TTOP a modular, versatile and easy to use microphysiological system, with integrated biosensors


Resistance, impedance, oxygen biosensors integration

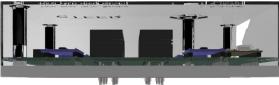

Device unique features

- No temperature or positioning artifacts
- Biocompatible
- Mini invasive
- Quantitative
- Automated data sampling with wireless approach


Activities

- Design and prototyping for ALI cultures
- Electronic design and prototyping
- 3D printing and manufacturing
- IOT programming
- Protocol definition and scale up
- Technical and biological validation

TTOP a modular, versatile and easy to use microphysiological system, with integrated biosensors


Resistance, impedance, oxygen biosensors integration

Device unique features

- No temperature or positioning artifacts
- Biocompatible
- Mini invasive
- Quantitative
- Automated data sampling with wireless approach

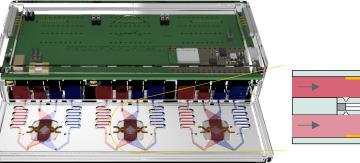
Activities

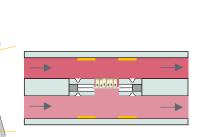
- Design and prototyping for ALI cultures
- Electronic design and prototyping
- 3D printing and manufacturing
- IOT programming
- Protocol definition and scale up
- Technical and biological validation

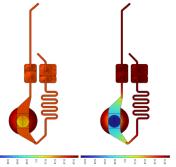
People involved:

Contacts: lorenzopietro.Coppadoro@polimi.it

TTOP a modular, versatile and easy to use microphysiological system, with integrated biosensors, **mimicking the human microenvironment**

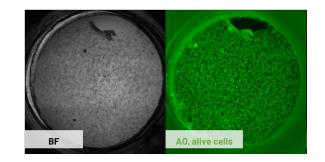

Modular design to mimic complex dynamic physiopathological environments with a plug & play approach


Device unique features


- Reuse of the culture insert for sequential treatments
- Programmable apical and basal perfusion conditions
- Scalable and automated design
- Automated data sampling with wireless approach

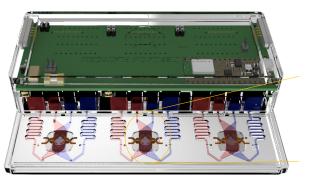
Activities

- Electronic design and prototyping
- Comsol multiphysics FEM modeling
- 3D printing and manufacturing
- IOT programming
- Protocol definition and scale up
- Technical and biological validation



Contacts: lorenzopietro.Coppadoro@polimi.it

TTOP a modular, versatile and easy to use microphysiological system, with integrated biosensors, **mimicking the human microenvironment**

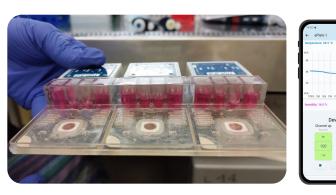

Modular design to mimic complex dynamic physiopathological environments with a plug & play approach

Device unique features

- Reuse of the culture insert for sequential treatments
- Programmable apical and basal perfusion conditions
- Scalable and automated design
- Automated data sampling with wireless approach

Activities

- Electronic design and prototyping
- Comsol multiphysics FEM modeling
- 3D printing and manufacturing
- IOT programming
- Protocol definition and scale up
- Technical and biological validation



People involved:

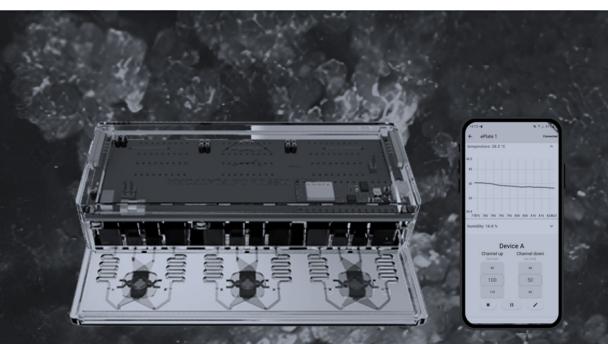
Contacts: lorenzopietro.Coppadoro@polimi.it

Milli-fluidic Platforms and Microphysiological Systems

International partners and current project lines

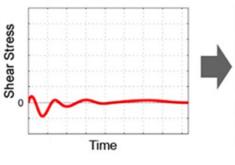
- Co-cultures Epithelia-Endothelium for absorption studies
- I.R.C.C.S. Ospedale San Raffaele

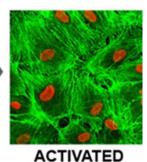
- Intestinal Organoids integration
- Mechanical substrate properties effect on cell's maturation
- Integration of 2.5D primary cardiac decellularized patches
- Recirculation system for automated medium change for alginate 3D scaffolds
- PBMC migration/chemotaxis assay
- PBMC activation and TTOP pyrogenicity
- 3D villi-like scaffolds integration for intestinal advanced models
- Multi-organ platform for cardiac-liver toxicity



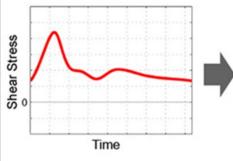
IBEC[®]

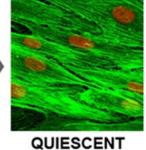
Contacts: lorenzopietro.Coppadoro@polimi.it


Milli-fluidic Platforms and Microphysiological Systems


Three-Dimensional Bioreactors

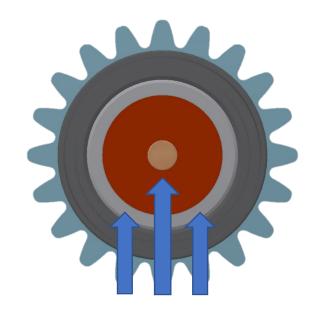
Bioreactors for complex hydrodynamic stimulation

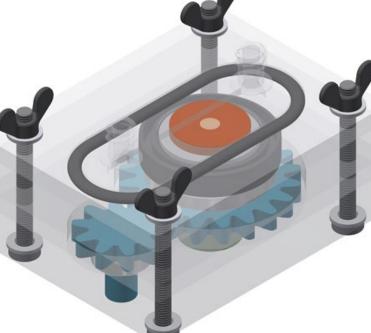

ATHEROPRONE FLOW



ENDOTHELIUM

ATHEROPROTECTIVE FLOW





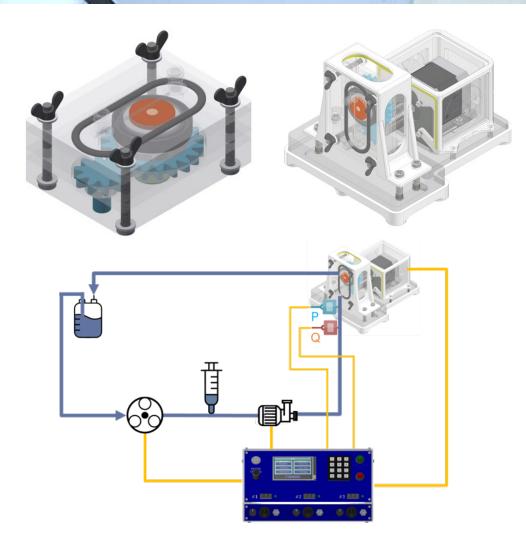
QUIESCENT ENDOTHELIUM

Characteristics

- Controlled **hydrodynamic multidirectional stimulation** for studying vascular endothelial disfunctions
- Modular and versatile, integrated with an electronic control unit

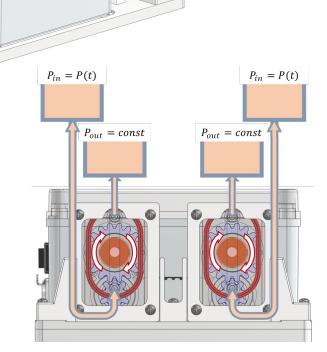
elia.pederzani@polimi.it

Three-Dimensional Bioreactors Bioreactors for complex hydrodynamic stimulation


Bioreactors for complex hydrodynamic stimulation

Activities

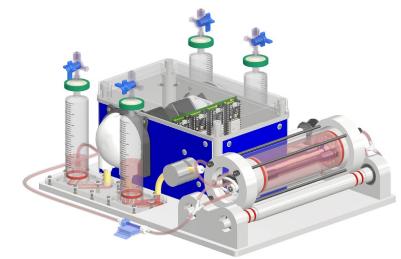
- TECH: hardware and software optimization
 - CAD design of new bioreactor versions
 - o rapid prototyping
 - o microntrollers' managing
 - o fluid dynamic simulations
- BIO: biological validation on cell
 monolayers and biological tissue samples
 - o cell culture on 2D acrylic cartridge
 - o flow-induced stimuli application
 - o *immunostaining analysis*



Bioreactors for complex hydrodynamic stimulation

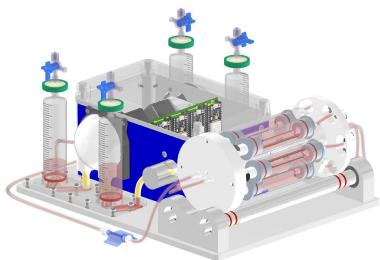
Activities

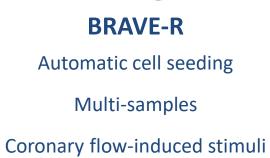
- TECH: hardware and software optimization
 - pressure-driven system development
 - o state-machine Labview VI design
 - o fluid dynamic simulations
- BIO: biological validation on cell monolayers
 - o cell culture on 2D acrylic cartridge
 - o flow-induced stimuli application
 - immunostaining analysis and permeability assay



In collaboration with

Advanced platform for recapitulating vascular phenomena




BRAVE

Automatic cell seeding

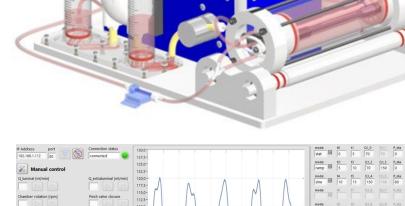
Fine pre-tensioning

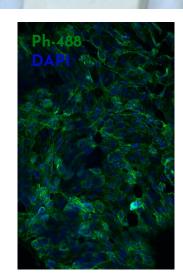
Dynamic flow-induced stimuli

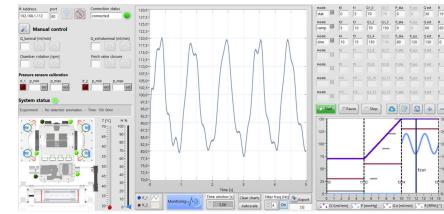
BRAVE-RY Mechanical test (ISO 7198) Anastomosis geometries Large vessels' flow-induced stimuli

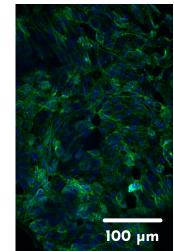
Advanced Culture Systems

elia.pederzani@polimi.it






Advanced platform to establish a physiologically-relevant vascular model

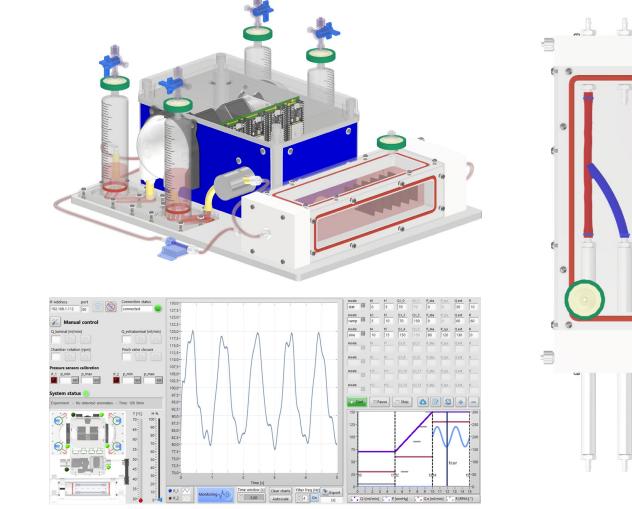

Activities

- TECH: hardware and software optimization
 - CAD design of new culture chambers
 - \circ rapid prototyping
 - microntrollers' managing
 - o state-machine Labview GUI design
 - o fluid dynamic simulations
- BIO: 3D vascular model
 - seeding protocols for graft co-culture
 - o flow-induced stimuli application
 - o *immunostaining analysis*

In collaboration with

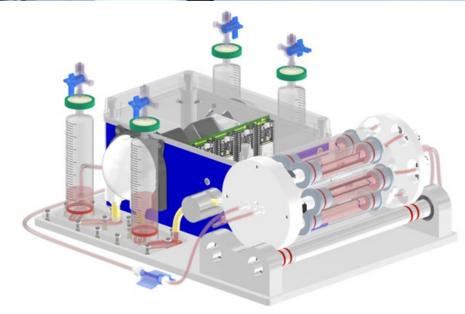
ISTITUTO DI RICERCHE FARMACOLOGICHE MARIO NEGRI · IRCCS

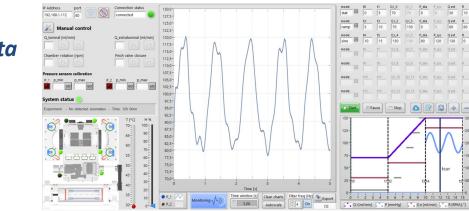
Advanced platform to simulate arteriovenous fistula behaviors

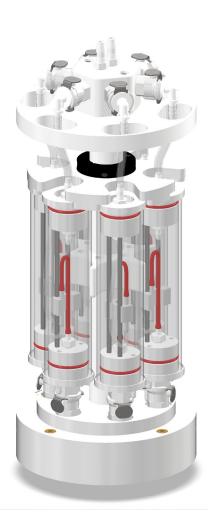

Activities

- TECH: hardware and software optimization
 - CAD design of new culture chambers
 - rapid prototyping
 - microntrollers' managing
 - o state-machine Labview GUI design
 - o *fluid dynamic simulations*
- BIO: biological experiments for the ex vivo replica of arteriovenous fistula
 - o native vessels harvesting
 - AVF flow-induced stimuli application
 - o *immunostaining analysis*

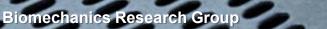
ISTITUTO DI RICERCHE FARMACOLOGICHE MARIO NEGRI · IRCCS


Advanced platform to validate a very small caliber vascular model


Activities


- TECH: hardware and software optimization
 - CAD design of new culture chambers
 - rapid prototyping
 - microntrollers' managing
 - o state-machine Labview GUI design
 - o *fluid dynamic simulations*
- BIO: biological experiments for the decellularization and recellularization of rat aorta
 - o decellularization protocols
 - o recellularization protocols
 - o flow-induced stimuli application

Three-Dimensional Bioreactors Advanced platform as pulmonary simulator



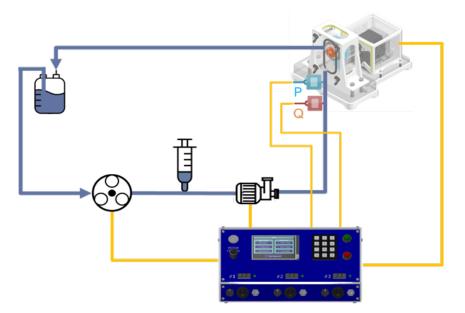
Advanced platform to simulate pulmonary physiological functions

Activities

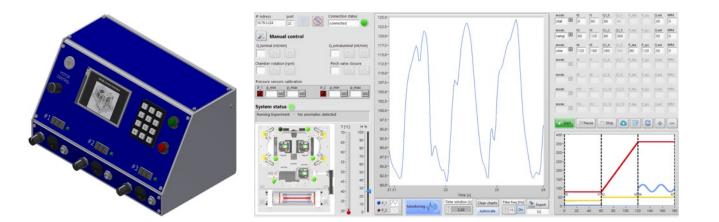
- TECH: hardware and software optimization
 - CAD design of 2D and 3D (organ dimension) chamb
 - rapid prototyping
 - o microntrollers' managing
 - o state-machine Labview GUI design
 - o fluid dynamic simulations
- EXP: simulator (silicone phantom model) testing
 - o lung phantom model manufacturing
 - o *setup validation*
 - o dynamic stimuli application

In collaboration with CHIMICA, MATERIALI E INGEGNERIA CHIMICA "GIULIO NATTA"

Workflow and main activities


				🔛 Inverti 🔛 Reimposta	ingrandiaci recente	
Nuovo o				Progetti Tasti di scelta rapida Dettagli file		
rive parte				Inventor Electrical Project		
6 •••		Assiene				
Disegno		Presentatione				
			Townships resultings result as	an 📄 Apri tasti di soleta rapida utilizzi	ando Esplora risorae di Windows	
ocumenti recenti				Element attancet Grante Poccia Elenco Cence documenti n	ecerti	
(Ryonia file) Progetto O Progeto attus # Tati i document monti	€ + Parete corta.p € 1546900-1		Assensition	nci.vel 19, 206-124 um costestes pr	Stil-Ottan	
ipi di file Ri Tuto Ri Assem		Sec.	n l	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
e Ausen e Diegs e Pati e Presenazors	1540908-1.gr	Maschera frontale	t. Parist ipt Assier	Tot an Moor setup 2 sanc. Panel pt Moor setup pt Moor setup pt	Base motore iam	
rdina per		100 I				

2. Design and realization of the hydraulic circuit

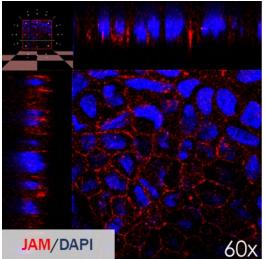

- Choosing the actuation components
- Design of the **hydraulic circuit**
- Process automations (seeding, mediun change)

1. **Design and prototyping of** culture chambers/components/supports

- Design with **CAD** (Inventor)
- simulations
- **prototyping** (laser, drilling machine, 3D printing)

Workflow and main activities

- 3. Control system development
- Arduino programming
- Control unit realization


4. Bench tests

- Phantom
- Biological tissues/prototissues

- cell / tissue cultures
- culture post processing and analyses (hysto, IF): tissue morphology, cell density and proliferation, cell / tissue characterization

