C3D Lab

3D and Computer Simulation Laboratory

C3D Lab

The 3D and Computer Simulation Laboratory was founded in 2017 by IRCCS Policlinico San Donato in collaboration with our research group at Politecnico di Milano and with the Computational Mechanics &* Advanced Materials Group at University of Pavia. The activities of the Lab are focused on cardiovascular applications and are strongly clinically driven: the mission of the Lab consists in providing clinicians with new and more effective tools to exploit at best the information yielded by advanced medical imaging, in order to improve early diagnosis, prognosis, as well as surgical and interventional planning. The activities of the Lab cover computational fluid dynamics and structural mechanics to simulate the effects of pathologies and interventions, the processing of medical imaging for the direct computation of the in vivo mechanics of tissues and organs, and 3D printing. 

For further details you may want to watch the following videos on the Facebook page of Gruppo Ospedaliero San Donato Foundation:

The Lab at a Glance

3D Printing to Assess Cardiovascular Anatomies

3D Virtual Models and Augmented Reality

3D Anatomical Reconstructions and Patient-Specific Computational Fluid Dynamics



Research interests

The activities of the Laboratory of Computational and 3D Simulation cover a broad spectrum of applications in the field of cardiology, interventional cardiology and cardiac surgery. Current projects focus on:

Patient-specific simulation of percutaneous heart valve replacement

  • Finite element modeling of stenting procedures in the right ventricular outflow tract (RVOT)
  • Finite element modeling of ballooning and pre-stenting in percutaneous pulmonary valve implantation (PPVI) to predict the risk of coronary artery compression, aortic root distortion, calcific rupture and stent distortion
  • • 3D printing of patient-specific anatomies to test the feasibility of percutaneous procedures in complex congenital cardiovascular scenarios

Image-based quantification of regional ventricular function

  • Highly resolved strain computation of endocardial strains in the left ventricle (LV) based on ultrasound imaging
  • 4D-flow analysis of regional LV fluid dynamics as a possible factor in the prognosis of post-ischemic regional wall function

Image-based analysis of ventricular electromechanical disorders

  • Highly resolved endocardial strains based on 3D ultrasound to quantify the effect of ablation on ventricular mechanics in the Brugada Syndrome patients 

Patient-specific simulation of endovascular repair

  • Finite element simulation of endovascular stent deployment
  • Finite volume simulations to predict post-stenting fluid dynamics




Emiliano Votta, PhD

Lab Coordinator, Image-based computational modeling

Tel.: +39-02-2399-3461
email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Francesco Sturla, PhD

Finite Element Modeling

Tel.: +39 02 52774353
email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Alessandra Riva, MSc

Magnetic Resonance Imaging, In vivo Fluid Dynamics

Tel.: +39 02 52774353
email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Past Affiliates  

Matteo Frigelli, MSc

Ultrasound Imaging, Ventricular Mechanics

Tel.: +41 31 632 75 75
email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Gianmaria Formato, PhD

Computational Fluid Dynamics and FSI modeling

Tel.: +39 02 52774353
email: This email address is being protected from spambots. You need JavaScript enabled to view it.





  1. Chessa M, Van De Bruaene A, Farooqi K, Valverde I, Jung C, Votta E, Sturla F, Diller GP, Brida M, Sun Z, Little SH, Gatzoulis MA. New tools for the future: Computational Modeling, 3D Printing, Holograms, and Artificial Intelligence in adult with congenital heart disease. European Heart Journal. 2022:ehac266. https://doi.org/10.1093/eurheartj/ehac266. Online ahead of print.

  2. Bandera F, Mollo A, Frigelli M, Guglielmi G, Ventrella N, Pastore MC, Cameli M, Guazzi M. Cardiac Imaging for the Assessment of Left Atrial Mechanics Across Heart Failure Stages. 
    Front Cardiovasc Med. 2022 Jan 13;8:750139. https://doi.org/10.3389/fcvm.2021.750139. eCollection 2021.

  3. Frigelli M, Sturla F, Milani V, Citarella M, Menicanti L, Votta E, Castelvecchio S. Prognostic value of left atrial strain quantification from 2D ultrasound imaging in post-ischemic heart failure patients: evidence from the REMODEL-HF study. International Journal of Cardiology. 2022:S0167-5273(22)00633-7. https://doi.org/10.1016/j.ijcard.2022.04.071. Online ahead of print.

  4. Sturla F, Caimi A, Romarowski RM, Nano G, Glauber M, Redaelli A, Votta E, Marrocco-Trischitta MM. Fast approximate quantification of endovascular stent graft displacement forces in the bovine aortic arch variant. Journal of Endovascular Therapy 2022:15266028221095403. https://doi.org/10.1177/15266028221095403. Online ahead of print.

  5. Cappelletti S, Caimi A, Caldiroli A, Baroni I, Votta E, Riboldi SA, Marrocco-Trischitta MM, Redaelli A, Sturla F. Non-invasive estimation of vascular compliance and distensibility in the arm vessels: a novel ultrasound-based protocol. Quantitative Imaging in Medicine and Surgery 2022https://dx.doi.org/10.21037/qims-21-987. Online ahead of print.

  6. Riva A, Sturla F, Pica S, Camporeale A, Tondi L, Saitta S, Caimi A, Giese D, Palladini G, Milani P, Castelvecchio S, Menicanti L, Redaelli A, Lombardi M, Votta E. Comparison of Four-Dimensional Magnetic Resonance Imaging Analysis of Left Ventricular Fluid Dynamics and Energetics in Ischemic and Restrictive Cardiomyopathies. Journal of Magnetic Resonance Imaging, 2022. https://doi.org/10.1002/jmri.28076. Online ahead of print.

  7. Saitta S, Sturla F, Caimi A, Riva A, Palumbo MC, Nano G, Votta E, Della Corte A, Glauber M, Chiappino D, Marrocco-Trischitta MM, Redaelli A. A deep learning-based and fully automated pipeline for thoracic aorta geometric analysis and planning for endovascular repair from computed tomography. Journal of Digital Imaging 2022;35(2):226-239. https://doi.org/10.1007/s10278-021-00535-1

  8. Tasca G, Sturla F, Jaworek M, Giese D, Menicanti L, Vismara R, Lombardi M, Redaelli A. In vitro four-dimensional flow magnetic resonance analysis of the effect of pericardial valve design on aortic flow. J Med Eng Technol. 2022 Apr;46(3):209-219. https://doi.org/10.1080/03091902.2022.2026505

  9. Pappone C, Santinelli V, Mecarocci V, Tondi L, Ciconte G, Manguso F, Sturla F, Vicedomini G, Micaglio E, Anastasia L, Pica S, Camporeale A, Lombardi M. Brugada Syndrome: New Insights From Cardiac Magnetic Resonance and Electroanatomical Imaging. Circ Arrhythm Electrophysiol. 2021 Oct 25:CIRCEP121010004. https://doi.org/10.1161/CIRCEP.121.010004

  10. Pluchinotta FR, Caimi A, Pilati M, Carminati M, Sturla F. Computer-based prediction of coronary artery compression in the planning of transcatheter pulmonary valve implantation. EuroIntervention. 2021 Sep 20;17(7):584-585. https://doi.org/10.4244/EIJ-D-20-01114

  11. Galea N, Pambianchi G, Cundari G, Sturla F, Marchitelli L, Putotto C, Versacci P, De Paulis R, Francone M, Catalano C. Impaction of Regurgitation Jet on Anterior Mitral Leaflet Causes Diastolic Dysfunction in Patients With Bicuspid Aortic Valve and Mild Insufficiency: A Cardiovascular Magnetic Resonance Study. Int J Cardiovasc Imaging. 2021 Aug 26. https://doi.org/10.1007/s10554-021-02384-z

  12. Marrocco-Trischitta MM, Sturla F. Blood flow helical pattern in type III arch configuration as a potential risk factor for type B aortic dissection. Eur J Cardiothorac Surg. 2021 Aug 10:ezab307. https://doi.org/10.1093/ejcts/ezab307

  13. Castelvecchio S, Frigelli M, Sturla F, Milani V, Pappalardo OA, Citarella M, Toso A, Menicanti L, Votta E. Elucidating the mechanisms underlying left ventricular function recovery in ischemic heart failure patients undergoing surgical remodelling: a 3D ultrasound analysis. J Thorac Cardiovasc Surg. 2021 Feb 26:S0022-5223(21)00381-0. https://doi.org/10.1016/j.jtcvs.2021.02.067

  14. Riva A, Sturla F, Caimi A, Pica S, Giese D, Milani P, Palladini G, Lombardi M, Redaelli A, Votta E. 4D Flow evaluation of blood non-Newtonian behavior in left ventricle flow analysis. J Biomech. 2021 Feb 8;119:110308. https://doi.org/10.1016/j.jbiomech.2021.110308

  15. Pluchinotta FR, Caimi A, Pilati M, Carminati M, Sturla F. Computer-based prediction of coronary artery compression in the planning of transcatheter pulmonary valve implantation. EuroIntervention. 2021 Jan 12:EIJ-D-20-01114. https://doi: 10.4244/EIJ-D-20-01114. Online ahead of print.

  16. Pasqualin G, Sturla F, D'Aiello AF, Chessa M. Mixed reality navigation of a systemic venous baffle obstruction: unravelling the percutaneous approach in atrial switch operation. Eur Heart J. 2020: ehaa961. https://doi.org/10.1093/eurheartj/ehaa961.

  17. Redaelli A, Votta E. Cardiovascular patient-specific modeling: Where are we now and what does the future look like? APL Bioeng. 2020, 4, 040401. https://doi.org/10.1063/5.0031452.

  18. Emendi M, Sturla F, Ghosh RP, Bianchi M, Piatti F, Pluchinotta FR, Giese D, Lombardi M, Redaelli A, Bluestein D. Patient-Specific Bicuspid Aortic Valve Biomechanics: A Magnetic Resonance Imaging Integrated Fluid-Structure Interaction Approach. Ann Biomed Eng. 2020 Aug 17. https://doi.org/10.1007/s10439-020-02571-4

  19. Marrocco-Trischitta MM, Romarowski RM, Alaidroos M, Sturla F, Glauber M, Nano G. Computational Fluid Dynamics Modeling of Proximal Landing Zones for Thoracic Endovascular Aortic Repair in the Bovine Arch Variant. Ann Vasc Surg. 2020 May 29:S0890-5096(20)30431-3. https://doi.org/10.1016/j.avsg.2020.05.024

  20. Caimi A, Pasquali M, Sturla F, Pluchinotta FR, Giugno L, Carminati M, Redaelli A, Votta E. Prediction of post-stenting biomechanics in coarcted aortas: A pilot finite element study. J Biomech. 2020 May 22;105:109796. https://doi.org/10.1016/j.jbiomech.2020.109796.

  21. Sturla F, Piatti F, Jaworek M, Lucherini F, Pluchinotta FR, Siryk SV, Giese D, Vismara R, Tasca G, Menicanti L, Redaelli A, Lombardi M. 4D Flow MRI hemodynamic benchmarking of surgical bioprosthetic valves. Magn Reson Imaging. 2020 May;68:18-29. https://doi.org/10.1016/j.mri.2020.01.006.

  22. Pluchinotta FR, Sturla F, Caimi A, Giugno L, Chessa M, Giamberti A, Votta E, Redaelli A, Carminati M. 3-Dimensional personalized planning for transcatheter pulmonary valve implantation in a dysfunctional right ventricular outflow tract. Int J Cardiol. 2019 Dec 6. pii: S0167-5273(19)34925-3. https://doi.org/10.1016/j.ijcard.2019.12.006.

  23. Pappone C, Mecarocci V, Manguso F, Ciconte G, Vicedomini G, Sturla F, Votta E, Mazza B, Pozzi P, Borrelli V, Anastasia L, Micaglio E, Locati E, Monasky M, Lombardi M, Calovic Z, Santinelli V. New Electro-Mechanical Substrate Abnormalities in High-Risk Patients with Brugada Syndrome. Heart Rhythm. 2019 Nov 19. pii: S1547-5271(19)31031-8. https://doi.org/0.1016/j.hrthm.2019.11.019.

  24. Butera G, Sturla F, Pluchinotta FR, Caimi A, Carminati M. Holographic Augmented Reality and 3D Printing for Advanced Planning of Sinus Venosus ASD/Partial Anomalous Pulmonary Venous Return Percutaneous Management. JACC Cardiovasc Interv. 2019 Jul 22;12(14):1389-1391. https://doi.org/10.1016/j.jcin.2019.03.020.
  25. Caimi A, Sturla F, Pluchinotta FR, Giugno L, Secchi F, Votta E, Carminati M, Redaelli A. Prediction of stenting related adverse events through patient-specific finite element modelling. J Biomech. 2018 Oct 5;79:135-146. https://doi.org/10.1016/j.jbiomech.2018.08.006.

  26. Di Franco A, Rong LQ, Munjal M, Weinsaft JW, Kim J, Sturla F, Girardi LN, Gaudino M. Aortic symmetry index: Initial validation of a novel preoperative predictor of recurrent aortic insufficiency after valve-sparing aortic root reconstruction. J Thorac Cardiovasc Surg. 2018 Oct;156(4):1393-1394. https://doi.org/10.1016/j.jtcvs.2018.05.047.

  27. Gaudino M, Piatti F, Lau C, Sturla F, Weinsaft JW, Weltert L, Votta E, Galea N, Chirichilli I, Di Franco A, Francone M, Catalano C, Redaelli A, Girardi LN, De Paulis R. Aortic flow after valve sparing root replacement with or without neosinuses reconstruction. J Thorac Cardiovasc Surg. 2018 Jul 27. pii: S0022-5223(18)32026-9. https://doi.org/10.1016/j.jtcvs.2018.06.094.

  28. Galea N, Piatti F, Sturla F, Weinsaft JW, Lau C, Chirichilli I, Carbone I, Votta E, Catalano C, De Paulis R, Girardi LN, Redaelli A, Gaudino M. Novel insights by 4D Flow imaging on aortic flow physiology after valve-sparing root replacement with or without neosinuses. Cornell International Consortium for Aortic Surgery (CICAS). Interact Cardiovasc Thorac Surg. 2018 Jun 1;26(6):957-964. https://doi.org/10.1093/icvts/ivx431.

  29. Galea N, Piatti F, Lau C, Sturla F, Weltert L, Carbone I, De Paulis R, Gaudino M, Girardi LN; Cornell International Consortium for Aortic Surgery (CICAS). 4D flow characterization of aortic blood flow after valve sparing root reimplantation procedure. J Vis Surg. 2018 May 9;4:95. https://doi.org/10.21037/jovs.2018.03.17. eCollection 2018.

  30. Tedaldi E, Montanari C, Aycock KI, Sturla F, Redaelli A, Manning KB. An experimental and computational study of the inferior vena cava hemodynamics under respiratory-induced collapse of the infrarenal IVC. Med Eng Phys. 2018 Apr;54:44-55. https://doi.org/10.1016/j.medengphy.2018.02.003.

  31. Romarowski RM, Conti M, Morganti S, Grassi V, Marrocco-Trischitta MM, Trimarchi S, Auricchio F. Computational simulation of TEVAR in the ascending aorta for optimal endograft selection: A patient-specific case study. Comput Biol Med. 2018 Oct 18;103:140-147. https://doi.org/10.1016/j.compbiomed.2018.10.014.

  32. Conti M, Vandenberghe S, Marconi S, Ferrari E, Romarowski RM, Morganti S, Auricchio F, Demertzis S. Reversed Auxiliary Flow to Reduce Embolism Risk During TAVI: A Computational Simulation and Experimental Study. Cardiovasc Eng Technol. 2018 Oct 16. https://doi.org/10.1007/s13239-018-00386-y.

  33. Romarowski RM, Lefieux A, Morganti S, Veneziani A, Auricchio F. Patient-specific CFD modelling in the thoracic aorta with PC-MRI-based boundary conditions: A least-square three-element Windkessel approach. Int J Numer Method Biomed Eng. 2018 Nov;34(11):e3134. https://doi.org/10.1002/cnm.3134.

  34. Marrocco-Trischitta MM, van Bakel TM, Romarowski RM, de Beaufort HW, Conti M, van Herwaarden JA, Moll FL, Auricchio F, Trimarchi S. Eur J Vasc Endovasc Surg. 2018 Apr;55(4):584-592. https://doi.org/10.1016/j.ejvs.2017.12.019.

  35. Romarowski RM, Faggiano E, Conti M, Reali A, Morganti S, Auricchio F. A novel computational framework to predict patient-specific hemodynamics after TEVAR: Integration of structural and fluid-dynamics analysis by image elaboration. Computers & Fluids. In press. https://doi.org/10.1016/j.compfluid.2018.06.002.

  36. Conti M, Morganti S, Finotello A, Romarowski RM, Reali A, Auricchio F. Aortic endovascular surgery. In: SEMA SIMAI Springer Series. 2018;16:167-184


Prizes and Honors


... coming soon!







... coming soon!


Equipment and available technologies



Computational facilities - The Lab is equipped with facilities specifically devoted to 3D medical image processing and computational biomechanics including dedicated commercial software such as Mimics Innovation Suite (Materialise) and Abaqus (Dessault Systèmes) as well as open source software package (e.g., SimVascular) and library (e.g., LifeV) purposely tailored to blood flow application. Dedicated workstations (Fujitsu CELSIUS J550/2, Intel® Core™ i7-7700 CPU 3.60 GHz with 32 GB RAM) are available for pre- and post-processing while simulations are run on two high performance computing PowerEdge M630 blade servers (IntelXeon E5-2690 v4 2.6GHz, 35M Cache, 9.60 GT/s), each one equipped with 28 cores and running CentOS Linux operating system (version 7.4). 


Experimental facilities - The Lab facilities include also a high-end 3D printer (MJP2500 Plus, by 3D Sytems) to obtain deformable and suturable phantoms of cardiovascular organs, and a highly accurate 3D scanner (Artec Micro, by Artec 3D) to obtain the digital model of implantable devices or small cardiovascular structures.



The 3D and Computational Modeling Lab is grateful to the following funders supporting our research:


Ministero della Salute (Italian Minstry of Health) - Conto Capitale 2018

“Modelli fisici di anatomie complesse e sperimentazione in vitro a supporto della pianificazione chirurgica (CC-2016-2365450)”


Ministero della Salute (Italian Minstry of Health) - Conto Capitale 2020

“Integrazione di imaging cardiovascolare 3D ed applicazioni di realtà estesa (realtà aumentata e realtà virtuale) per la creazione di heart team virtuali tra professionisti di istituzioni diverse, a supporto della selezione dei pazienti e della pianificazione degli interventi di cardiochirurgia o di interventistica strutturale (CC-2019-2366577_001)”



Open positions

........ coming soon!


Contacts and Location

This email address is being protected from spambots. You need JavaScript enabled to view it.

3D and Computer Simulation Laboratory

IRCCS Policlinico San Donato, Blocco F

Piazza Edmondo Malan, 2 - San Donato Milanese (MI)

Phone: +39 02 52774353


This email address is being protected from spambots. You need JavaScript enabled to view it.

Biomechanics Research Group

Politecnico di Milano, Department of Electronics, Information and Bioengineering

via Camillo Golgi, 39 - Milano (MI)

Phone: +39 02 23993461